Salt Analysis: Ammonium Chloride (NH₄Cl) # 1. Physical Examination of the Salt | Experiment | Observation | Inference | |---------------|--------------------------|---| | Colour | White | Fe ²⁺ , Cu ²⁺ , Ni ²⁺ , Co ²⁺ , Mg ²⁺ are absent | | Smell | Ammoniacal smell | NH ₄ ⁺ may be present | | Deliquescence | Does not absorb moisture | Non-deliquescent | # 2. Dry Heating Test | Experiment | Observation | Inference | |-------------------------------|---|---------------------------| | A pinch of salt is taken in a | Ammoniacal smell along with white | NH ₄ Cl may be | | dry test tube and heated. | sublimate on the inner wall of the test tube. | present | #### 3. Flame Test | Experiment | Observation | Inference | |---|-------------------------|--------------| | Clean platinum wire dipped in conc. HCl, | No characteristic flame | Inconclusive | | touched with the given salt, and held at the edge | observed | | | of the oxidizing flame of a Bunsen burner. | | | #### 4. Concentrated H₂SO₄ Test | Observation | Inference | |-------------------------------|--| | Colourless gas evolves with a | Chloride, Sulphate | | pungent, suffocating smell. | may be present | | | | | | Observation Colourless gas evolves with a pungent, suffocating smell. | # 5. Wet Test for Acid Radical (Chloride Ion, Cl-) | Experiment | Observation | Inference | |---|---|-------------| | A small aqueous solution of the salt is | A highly curdy white precipitate | Presence of | | taken in a test tube. Drops of HNO ₃ are | | | | added, followed by AgNO ₃ solution. | soluble in NH ₄ OH solution. | | | | | | | | | | #### **Reactions:** - Cl⁻⁺ AgNO₃ → AgCl↓ (Curdy white precipitate) + NO₃⁻ - AgCl + $2NH_4OH \rightarrow [Ag(NH_3)_2]Cl$ (Soluble complex) + $2H_2O$ #### 6. Test for Zero Group Cation (Ammonium Ion, NH₄+) | Experiment | Observation | Inference | |-------------------------------|-------------------------------------|---| | | | | | To an aqueous solution of the | A pungent smelling, colourless gas | Presence of NH ₃ | | salt, dilute NaOH solution is | evolves which makes brown | (and thus NH ₄ ⁺) is | | added and warmed. | precipitate with Nessler's reagent. | confirmed | | | | | #### **Reactions:** - NH₄Cl + NaOH → NaCl + H₂O + NH₃↑ (Pungent fumes) - $K_2[HgI_4] + NH_3 + NaOH \rightarrow NH_2 \cdot HgO \cdot HgI \downarrow + NaI + H_2O$ (Nessler's Reagent) (Brown precipitate) **Conclusion for Zero Group Cation:** Since a zero-group cation (NH₄⁺) is predicted in the given salt, no further group analysis is done. #### Results for Salt 1 (NH₄Cl) - Acid Radical: Cl⁻ (Chloride ion) - **Basic Radical:** NH₄⁺ (Ammonium ion) # **Studychem.in** (Chemistry Resource for School /College/NEET)