NEET/90 marks MCQs ## Some Basic Concepts of Chemistry/ Atomic Structure/ Chemical Bonding ## **Instructions:** • Each question carries either 4 marks (Part-I) and 2 marks (Part-II) as indicated. ## **Part I: 4-Marks Questions** | 1. | What is the mass of 0.5 moles of glucose ($C_6H_{12}O_6$)? (Atomic mass: $C=12$, $H=1$, $O=16$) | | | : C=12, H=1, O=16) | | |--|---|--|---|-----------------------|--| | | A) 90 g | B) 180 g | C) 45 g | D) 360 g | | | 2. | A compound on analy | ysis gave the following | g percentage composition | on: C = 24.27%, H = | | | 4.07%, Cl = 71.65%. Its empirical formula is: (Atomic mass: C=12, H=1, Cl=3: | | | | | | | | A) CH ₂ Cl | B) C ₂ H ₄ Cl ₂ | C) CHCl ₂ | D) CH ₃ Cl | | | 3. | 3. If 20 g of CaCO ₃ is reacted with 20 g of HCl, which is the limiting reagent? | | | | | | $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ | | | | .in | | | | (Atomic mass: Ca=40, C=12, O=16, H=1, Cl=35.5) | | | | | | | A) CaCO ₃ | B) HCl | C) CaCl ₂ | D) H ₂ O | | | 4. | Calculate the molarity of a solution prepared by dissolving 4.9 g of H ₂ SO ₄ in 250 mL | | | | | | | of water. (Atomic mass: H=1, S=32, O=16) | | | | | | | A) 0.1 M | B) 0.2 M | C) 0.4 M | D) 0.5 M | | | 5. | How many atoms are | present in 98 grams of | f H ₂ SO ₄ ? (Atomic mass | s: H=1, S=32, O=16; | | Avogadro's number = 6.022×10^{23}) D) 1×6.022×10²³ | 6. | An electron transition series does this line ap | | energy level in a hydro | ogen atom. In which | |-----|---|---|--|----------------------------| | A) | Lyman | B) Balmer | C) Paschen | D) Brackett | | 7. | | ngth of an electron (mack's constant, h=6.626 | $ass = 9.1 \times 10^{-31} \text{ kg}) \text{ mo}$
$5 \times 10^{-34} \text{ J s})$ | ving with a velocity | | A) | 3.3×10 ⁻¹⁰ m | B) 1.5×10 ⁻⁹ m | C) 2.0×10 ⁻¹¹ m | D) 4.5×10 ⁻¹² m | | 8. | . What is the energy of an electron in the second Bohr orbit of a hydrogen atom? (Given | | | | | | Ground state energy of H atom = -13.6 eV) | | | | | A) | -3.4 eV | B) -1.51 eV | C) -0.85 eV | D) -13.6 eV | | 9. | Calculate the maximu | m number of electrons | s that can be present in | a subshell for which | | A) | <i>l</i> =3. | B) 10 | C) 14 | D) 18 | | 10. | 10. The energy of an electron in the nth Bohr orbit for a hydrogen-like species is directly | | | | | | proportional to: | | | | | | A) Z^2/n^2 | B) n^2/Z^2 | C) Z/n | D) n/Z | | 11. | 11. Arrange the following molecules in increasing order of their bond angles: H ₂ O, NH ₃ , | | | | B) NH₃<H₂O<CH₄ C) CH₄<NH₃<H₂O D) H₂O<CH₄<NH₃ A) $7 \times 6.022 \times 10^{23}$ B) $3 \times 6.022 \times 10^{23}$ C) 6.022×10^{23} CH₄. A) H₂O<NH₃<CH₄ | 12. According to VS | 12. According to VSEPR theory, what is the geometry of SF ₄ ? | | | | | |---|---|--------------------|-------------------------|--|------------------| | A) Tetrahedral | B) Square planar | C) See-saw | D) Trigonal bipyramidal | | | | 13. What is the hybri | | | | | | | A) sp^3 | B) sp ³ d | C) sp^3d^2 | D) sp^3d^3 | | | | 14. Which of the foll | 4. Which of the following molecules has a dipole moment of zero? | | | | | | A) NH ₃ | B) H ₂ O | C) CO ₂ | D) SO ₂ | | | | 15. What is the bond | 15. What is the bond order of O_2^{2-} according to Molecular Orbital Theory? | | | | | | A) 0 | B) 0.5 | C) 1 | D) 2 | | | | | 17. | | | | | | Part II: 2-Marks Qu | iestions | | DH | | | | 16. Which of the following is an intensive property? | | | | | | | A) Volume | B) Mass | C) Density | D) Energy | | | | 17. What is the numb | per of significant figures | in 0.002040? | m.In | | | | A) 3 | B) 4 | C) 5 | D) 6 | | | | 18. The empirical for | und are related by: | | | | | | A) Molecular Formula = Empirical Formula + nB) Molecular Formula = n / Empirical Formula | | | | | | | | | | | | C) Molecular For | | D) Molecular Formula = Empirical Formula - n19. Which law is implicitly obeyed when a chemical equation is balanced? | | | | | | Studychem.in | A) Law of De | efinite Proportions | B) Law of Multiple | Proportions | |---|------------------------|--|----------------------| | C) Law of Co | onservation of Mass | D) Gay-Lussac's La | w of Gaseous Vol. | | 20. What is the b | asicity of orthophosph | oric acid (H ₃ PO ₄)? | | | A) 1 | B) 2 | C) 3 | D) 4 | | 21. According to | Aufbau principle, whi | ch orbital is filled immediatel | y after 3p? | | A) 3d | B) 4s | C) 4p | D) 3s | | 22. Heisenberg's | uncertainty principle | e states that it is impossible | le to simultaneously | | determine wi | th absolute precision: | | | | A) Energy and time B) Position and momentum | | | | | C) Velocity and mass D) Charge and spin | | | | | 23. Which phenomenon confirms the particle nature of light? | | | | | A) Diffraction | B) Interference | C) Photoelectric effect | D) Refraction | | 24. The number of radial nodes (or spherical nodes) in a 3s orbital is: | | | | | A) 0 | B) 1 | C) 2 | D) 3 | | 25. Isotones have | o: | | | | A) Same atomic number but different mass numbers. | | | | | B) Same mass number but different atomic numbers. | | | | | C) Same number of neutrons but different atomic numbers. | | | | | D) Same number of electrons but different number of protons. | | | | | 26. Which type of bond is formed by the complete transfer of electrons between atoms? | | | | | A) Covalent bond | B) Ionic bond | C) Metallic bond | D) Hydrogen bond | | |---|-----------------------------------|--------------------------------|---------------------------------|--| | 27. Which of the following | ng theories explains th | ne shapes of simple mo | lecules based on the | | | repulsion between ele | ectron pairs? | | | | | A) Valence Bond Theory | (VBT) | | | | | B) Molecular Orbital The | B) Molecular Orbital Theory (MOT) | | | | | C) Valence Shell Electron Pair Repulsion (VSEPR) Theory | | | | | | D) Crystal Field Theory (| (CFT) | | | | | 28. The bond length is maximum in which of the following? | | | | | | A) N ₂ | B) N ₂ ⁺ | C) N ₂ ⁻ | D) N ₂ ²⁻ | | | 29. Which of the following exhibits hydrogen bonding? | | | | | | A) CH ₄ | B) H ₂ S | C) HF | D) HCl | | | 30. The concept of resonance is used to explain: | | | | | | A) The delocalization of electrons. | | | | | | B) The formation of multiple bonds. | | | | | | C) The breaking of bonds during reactions. | | | | | | D) The strength of ionic bonds. | | | | |