StudyChem | Your Comprehensive Chemistry Learning Hub

Bondings

Chemical Bonding and Molecular Structure – Class 11 Notes

Chemical Bonding & Molecular Structure

Class 11 CBSE | ISC | WBCHSE – Detailed Notes, Modern Theories, MCQs with Answers

1. Introduction

Chemical Bond: The attractive force that binds atoms together in a molecule or compound, responsible for the structure and properties of matter.

Chemistry’s central theme: Why and how atoms link to form molecules; what determines their shapes, strengths, and behavior.

2. Types of Chemical Bonds

(a) Ionic (Electrovalent) Bond

  • Electrons transferred from metal to non-metal. Results in cations/anions.
  • Example: NaCl (Na → Na⁺ + e⁻; Cl + e⁻ → Cl⁻)
Ionic solids: High melting point, brittle, conduct electricity in molten/solution.

(b) Covalent Bond

  • Shared pair(s) of electrons between two non-metals.
  • Examples: H₂, O₂, N₂
Cl₂: Cl· + ·Cl → Cl:Cl
Covalent compounds: Soft, low melting, poor conductors.

(c) Coordinate (Dative) Bond

  • Both shared electrons from one atom (donor).
  • Examples: [NH₄]⁺, SO₂, O₃

3. Octet Rule and Its Limitations

  • Stable configuration: 8 electrons in outer shell (2 for H, He).
  • Limitations: Odd-electron species (NO); Expanded octet (PF₅); Incomplete octet (BF₃).
[Lewis structures: BF₃, PF₅, NO]

4. Lewis Structures and Resonance

  • Lewis structure: Shows valence electrons as dots/lines, lone pairs/double bonds.
  • Formal charge: Used to predict the most stable structure.
  • Resonance: When multiple valid Lewis structures, actual molecule is a hybrid.
[CO₃²⁻ resonance structures]

5. Theories of Chemical Bonding

5.1 Valence Bond Theory (VBT)

  • Atomic orbitals overlap; electrons shared/pairs localized between two atoms.
  • Sigma (σ) bond: Head-on overlap; Pi (π) bond: Sidewise overlap.
[Sigma and Pi bond formation]

5.2 Hybridization

  • Mixing of atomic orbitals to create new, equal-energy hybrid orbitals.
  • sp = linear, sp² = trigonal planar, sp³ = tetrahedral…
Examples: CH₄ – sp³; BF₃ – sp²; BeCl₂ – sp

5.3 Molecular Orbital Theory (MOT)

MOT: Developed by Hund & Mulliken – explains the formation of molecular orbitals (MOs) spanning entire molecule.
  • Atomic orbitals combine to form MOs: same number as original orbitals.
  • Bonding (lower energy, more stability, denoted σ, π) and antibonding (higher energy, less stable, σ*, π*) orbitals.
  • Electrons fill MOs in increasing energy (Aufbau) with 2 electrons per orbital.
Bond Order (BO) = ½ × [No. in bonding MOs – No. in antibonding MOs]
Order of energy for diatomics Z ≤ 7: σ1s < σ*1s < σ2s < σ*2s < (π2px=π2py) < σ2pz
For O₂, F₂: σ2pz below π2p MOs.
[Molecular Orbital diagram for O₂, N₂]
  • O₂:  2 unpaired e⁻ in π* MOs ⇒ paramagnetic (verified by experiment).
  • N₂: BO = 3 ⇒ strong triple bond, diamagnetic.
  • He₂: BO = 0 ⇒ molecule doesn’t exist.
Bond Order examples: O₂ (8 in bonding, 4 in antibonding) → BO = 2. O₂⁻: BO = 1.5 (one extra e⁻ in antibonding).
[MO electron population for O₂, O₂⁺, O₂⁻]

6. VSEPR Theory (Valence Shell Electron Pair Repulsion)

Explains molecular shapes based on minimizing electron pair repulsions in the valence shell of the central atom.
  • Both lone and bond pairs repel; Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair.
  • Molecule adopts shape that minimizes these repulsions.

Steps in VSEPR Application:

  1. Write Lewis structure and count total electron pairs (lone + bond pairs) around central atom (use AXmEn notation).
  2. Predict basic geometry (electron pair geometry): Linear, trigonal planar, tetrahedral, trigonal bipyramidal, octahedral, etc.
  3. Account for lone pairs to get actual shape (molecular geometry).
AXmEnTotal electron pairsExampleElectron GeometryMolecular ShapeBond Angle (°)
AX₂2BeCl₂, CO₂LinearLinear180
AX₃3BF₃, SO₃Trigonal planarTrigonal planar120
AX₂E3SO₂Trigonal planarBent~118
AX₄4CH₄TetrahedralTetrahedral109.5
AX₃E4NH₃TetrahedralTrigonal pyramidal107
AX₂E₂4H₂OTetrahedralBent104.5
AX₅5PCl₅Trigonal bipyramidalTrigonal bipyramidal90, 120
AX₄E5SF₄Trigonal bipyramidalSeesaw101-119
AX₃E₂5ClF₃Trigonal bipyramidalT-shaped87-102
AX₂E₃5XeF₂Trigonal bipyramidalLinear180
Key Points: – Lone pairs compress bond angles. – The shape depends only on positions of atoms, not lone pairs. – Results in a rich variety of molecular shapes (trigonal planar, tetrahedral, pyramidal, bent, etc).
[VSEPR geometries: CH₄, NH₃, H₂O, BF₃, XeF₂, SF₄, ClF₃]

7. Formal Charge

Helps assign the most likely arrangement of electrons in Lewis structures; indicates the “electron bookkeeping” on each atom.
Formal charge = [Valence electrons] – [Nonbonding electrons] – ½ [Bonding electrons]

Calculation Steps:

  1. Write the Lewis structure of the molecule/ion.
  2. Count valence electrons of atom in free state.
  3. Count non-bonding electrons (lone pairs).
  4. Assign half of bonding electrons (shared pairs) to the atom.

Example: Ozone (O₃) – For central O atom:

  • Valence electrons: 6
  • Lone pair electrons: 2
  • Bonding electrons: 3 bonds × 2 = 6
  • Formal charge = 6 – 2 – ½×6 = 6 – 2 – 3 = +1
Importance:
– The structure with the lowest (closest to zero) formal charges and with negative charge on the most electronegative atom is favored.
– Useful in choosing most appropriate resonance structure.

8. Lattice Enthalpy

Lattice enthalpy (∆Hlattice): The energy released when 1 mole of an ionic crystalline compound is formed from its gaseous ions, or the energy required to separate 1 mole of solid into gaseous ions.
  • Exothermic (formation): M⁺(g) + X⁻(g) → MX(s) + ∆Hlattice
  • Endothermic (dissociation): MX(s) → M⁺(g) + X⁻(g)
  • Larger lattice energy = higher melting point, less solubility in non-polar solvents, greater bond strength
  • Increases with: Smaller ionic radii, higher ionic charge.
Trends:
– Lattice enthalpy (NaF) > (NaCl) > (NaBr) > (NaI) – as anion size increases, lattice energy decreases.
– MgO has greater lattice energy than NaCl (higher charge, smaller ions).

9. Born-Haber Cycle

A thermochemical cycle that analyzes the steps of formation of an ionic compound from its elements, allowing the calculation of lattice enthalpy via Hess’s Law.

Key Steps in NaCl Formation:

  1. Sublimation of Na(s) → Na(g): ∆Hsubl (endothermic)
  2. Ionization: Na(g) → Na⁺(g) + e⁻: IE (endothermic)
  3. Dissociation of Cl₂(g): ½Cl₂(g) → Cl(g): ½ bond energy (endothermic)
  4. Electron gain: Cl(g) + e⁻ → Cl⁻(g): EA (exothermic)
  5. Formation of NaCl(s): Na⁺(g) + Cl⁻(g) → NaCl(s): ∆Hlattice (exothermic)
∆Hf (formation) = ∆Hsubl + IE + ½ × bond energy + EA + ∆Hlattice
Example for NaCl:
  • ∆Hf (NaCl) = ∆Hsubl(Na) + IE₁(Na) + ½ D(Cl₂) + EA(Cl) + ∆Hlattice
  • Allows indirect measurement of lattice energy, as it cannot be measured directly.
[Born-Haber cycle step diagram for NaCl formation]
Summary: The Born-Haber cycle demonstrates how the energetics of all component steps combine to yield the overall enthalpy of formation, critical for understanding stability of ionic solids.

10. Practice MCQs (Answer & Explanation Below)

MCQOptions
1. Which of the following forms an ionic bond?a) H₂ b) O₂ c) NaCl d) Cl₂
2. The number of lone pairs in NH₃ is:a) 0 b) 1 c) 2 d) 3
3. Shape of BF₃ molecule is:a) Tetrahedral b) Trigonal planar c) Bent d) Linear
4. Which is a polar molecule?a) CO₂ b) CH₄ c) H₂ d) H₂O
5. The bond order of O₂ molecule is:a) 1 b) 2 c) 3 d) 4
6. Bond angle in water (H₂O) is:a) 90° b) 104.5° c) 120° d) 180°
7. Which has a coordinate bond?a) H₂ b) NH₄⁺ c) O₂ d) H₂O
8. Which molecule has an expanded octet?a) BH₃ b) PF₅ c) CO₂ d) CH₄
9. Valence electrons in BeCl₂?a) 4 b) 6 c) 8 d) 10
10. Resonance occurs in:a) CH₄ b) SO₃ c) NH₃ d) BeCl₂
11. Which is not explained by VSEPR?a) Lone pairs effect b) d-p π bonding c) Hybridization d) Bond length
12. Which is paramagnetic?a) N₂ b) O₂ c) CO₂ d) HCl
13. Molecule with highest bond order:a) O₂ b) N₂ c) F₂ d) H₂
14. Which hybridization leads to linear shape?a) sp b) sp² c) sp³ d) d²sp³
15. Bond angle in CH₄ is:a) 90° b) 104.5° c) 120° d) 109.5°
16. The term ‘Lewis acid’ refers to:a) Proton donor b) Electron donor c) Electron pair acceptor d) None
17. Example of molecule with bent shape:a) CO₂ b) H₂O c) BeF₂ d) BF₃
18. Which does not obey the octet rule?a) CH₄ b) NH₃ c) BeCl₂ d) H₂O
19. The correct electron-dot structure for NO₃⁻:a) Single N−O bond only b) Double bonds only c) Resonance hybrid d) None
20. Bond order for C≡N in HCN:a) 1 b) 2 c) 3 d) 4
21. Presence of two unpaired electrons in O₂ is explained by:a) Lewis theory b) VBT c) MOT d) VSEPR
22. Which has maximum number of lone pairs on central atom?a) NH₃ b) H₂O c) BeCl₂ d) PF₅
23. CO₂ is nonpolar because:a) C has no electronegativity b) Shape is linear c) Bonds not polar d) None
24. A triple bond consists of:a) 3 σ bond b) 2 σ + 1 π c) 1 σ + 2 π d) 3 π
25. The formal charge on O in O₃ (central O):a) +1 b) 0 c) -1 d) +2
26. The maximum covalency of nitrogen is:a) 3 b) 4 c) 5 d) 6
27. The energy required to break a bond is:a) Bond energy b) Ionization enthalpy c) Electron affinity d) Lattice energy
28. Molecule with one lone pair and three bond pairs:a) NH₃ b) CH₄ c) H₂O d) BF₃
29. Which is a planar molecule?a) NH₃ b) CH₄ c) BeCl₂ d) H₂O
30. Back bonding is seen in:a) C₂H₄ b) BF₃ c) H₂O d) NH₃

Answers & Explanations to MCQs

  1. c) NaCl – Ionic bond; electrons transfer from Na to Cl.
  2. b) 1 – One lone pair on N in NH₃.
  3. b) Trigonal planar – BF₃ is AX₃, sp² hybridized.
  4. d) H₂O – Bent shape, net dipole.
  5. b) 2 – O₂, by MOT calculations.
  6. b) 104.5°
  7. b) NH₄⁺ – N→H⁺ forms coordinate bond.
  8. b) PF₅ – P has 10 outer electrons (expanded octet).
  9. a) 4 – Be(2) + Cl(1 each).
  10. b) SO₃ – Has resonance.
  11. b) d-p π bonding – Not a focus of VSEPR.
  12. b) O₂ – Two unpaired e⁻ in MO diagram.
  13. b) N₂ – BO=3 (triple bond).
  14. a) sp – Linear, 180°.
  15. d) 109.5°
  16. c) Electron pair acceptor – Lewis acid.
  17. b) H₂O – Two lone pairs, bent.
  18. c) BeCl₂ – Be has incomplete octet.
  19. c) Resonance hybrid – NO₃⁻.
  20. c) 3 – C≡N is triple bond.
  21. c) MOT – O₂ paramagnetism explained by MOT.
  22. b) H₂O – Two lone pairs.
  23. b) Shape is linear – CO₂, dipoles cancel.
  24. c) 1 σ + 2 π – Triple bond.
  25. a) +1 – Central oxygen in O₃.
  26. c) 5 – Nitrogen can form up to five bonds.
  27. a) Bond energy
  28. a) NH₃ – 3 bond pairs, 1 lone pair.
  29. c) BeCl₂ – Linear planar molecule.
  30. b) BF₃ – Exhibits back bonding.
© 2025 Chemistry SmartNotes | Designed for Class 11 (CBSE, ISC, WBCHSE)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top